Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives
نویسنده
چکیده
Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented.
منابع مشابه
Fiber - Optic Sensing of Linear Thermal Expansion (RESEARCH NOTES)
The use of a LED fiber-optic sensor to measure displacement and linear thermal expansion is described. It has a sensitivity of about 0.6 mV/mm, a resolution of 1.25 mm, and a dynamic rang of 400 mm for displacement measurements. For thermal expansion, it shows a sensitivity of about 3.5 mV/C, and the experimental linear expansion values are in agreement with those calculated. The reported senso...
متن کاملA fiber optic sensor for measuring glucose in aqueous solutions
In this paper, the set-up of a multi-mode fiber optic sensor for measuring glucose in aqueous solutions is investigated and evaluated. The basis of this sensor is based on the Fresnel Reflection. In this setup, a helium-neon laser is used as a light source, a fiber optic probe, photocell as detector and a digital multimeter. The statistical analysis of the recorded data shows a highly linear be...
متن کاملFiber loop ringdown DNA and bacteria sensors.
We report a new type of refractive index-based biosensor using a fiber loop ringdown evanescent field (FLRD-EF) sensing scheme, in which the sensing signal is a time constant and detection sensitivity is enhanced by the multipass nature of the ringdown technique. Bulk index-based detections of three different single strand DNAs and one type of bacteria are demonstrated for the FLRD-EF sensors t...
متن کاملTapered Optical Fiber Coated with ZnO Nanorods for Detection of Ethanol Concentration in Water
This work presents ZnO nanorods coated multimode optical fiber sensing behavior in response to ethanol solution. The sensor operates based on modulation of light intensity which arises from manipulation of light interaction with the ambient environment in sensing region. For this purpose, two steps are experimentally applied here; etching and then coating fiber with ZnO nanorods to provide stro...
متن کاملA Standard Test Method for Evaluating Crack Monitoring Performance of Distributed Fiber Optic Sensors
In this paper, a standard test method of evaluating the measurement performance of distributed sensors such as Brillouin scattering based fiber optic sensors (FOSs) and other long gauge sensors for monitoring cracks is proposed. The performance evaluation of two types of Brillouin scattering based DFOSs named as BOTDR(Brillouin Optical Time Domain Reflectometry) and PPP-BOTDA (Pulse Pre-Pump Br...
متن کامل